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mode was used on the outside of the plasma tube, and with a constant Af value 
chosen (corresponding to a constant density value in the afterglow) the change in Q 
value was measured as the neutral pressure p in the tube was changed. A linear 
relationship between p and l /Q resulted, thus indicating that the electron-neutral 
collision frequency was the measured quantity. Values of 

ve/p = 0.70 c 0.15 x lo9 s - l  torr-]  

for the hydrogen plasma and 

ve/p = 0.80 f 0.15 x torr-’ 

for the helium plasma, were computed. The  ion-neutral collision frequency vi proved 
to be a more difficult parameter to measure, and simple kinetic theory considerations 
on the hard-sphere model predict vi/ve = vi/4v, where vi and U, are the ion and 
electron thermal velocities respectively. Thus, values of 

vi/p = 1.0 ~f: 0.15 x lo6 s - l  to r r - l  

for the helium plasma and 

vi/p = 1.50 & 0.15 x lo6 s - l  torr-]  

for the hydrogen plasma, were adopted. 
Using these values, Re(w) and the growth rate y = Im(w) were computed as a 

function of K, from equation (1) for the particular conditions prevailing in each 
experiment. Typical theoretical curves are shown in figures l (a )  and l (b) .  The  full 
curves indicate the Re(w) and refer to the left-hand scale, and the broken curves 
show the predicted growth rate y and refer to the right-hand scale. It is seen that in 
this case good agreement is obtained, and similarly good agreement is obtained for 
other m = + 1 and m = + 2  results, in spite of the approximations in the theory and 
the possible errors in the experiment. Therefore, it is concluded that it is the drift- 
dissipative instability which is observed in these plasmas. 

UKAEA Research Group, 
Culham Laboratory, 
Abingdon, Berks. 

M. W. ALCOCK 
B. E. KEEN 

12th February 1970 
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Screening of the photon propagator in many-body optics 

Abstract. An internally consistent treatment of the interaction of light with a 
molecular fluid in terms of a screened photon propagator is reported. Screen- 
ing simplifies the description of multiple scattering in terms of Ursell functions 
and the treatment of surface effects. In  a translationally invariant approximate 
theory the screened photon propagator and the screened radiation reaction are 
expressed in terms of the refractive index. 
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Bullough (1968, 1969, Bullough et al. 1968, Bullough and Hynne 1968, to be 
referred to as I, 11, 111, IV respectively) has developed an internally consistent 
many-body theory for the optical properties of a molecular fluid in terms of the 
propagator for the free photon field 

exp( ik,r) 
F(x, x’;w) (oo+ko2U) , Y = I x -x ’ ( ,  k, = wc-1 (1) 

Y 

where w is the angular frequency and U is the unit tensor. The  theory is a linear 
response theory, The  propagator (1) emerges as a c-number commutator of a second 
quantized field theory and the radiation field is handled in detail. This theory, 
expressed in terms of (l), we shall refer to as the ‘unscreened theory’. 

Because light couples to a macroscopic system via the surface, the many-body 
system must be chosen finite (I, 11). Surface effects therefore complicate all the 
intermolecular multiple scattering processes. Despite this complexity the macro- 
scopic formulae for optical scattering cross sections obtained in I11 and IV are simple 
and (to a good approximation) agree with the phenomenological theory. Features of 
the microscopic theory suggest that it would exhibit a simpler structure in terms of a 
screened photon propagator. It is important, in any case, to understand the details 
of the optical screening processes. 

Within the framework of Bullough (I, 11, 111, IV) we have therefore formulated 
an internally consistent theory in terms of a single screened photon propagator, 
.F( x, x’; U).  This ‘screened’ theory is wholly consistent with the unscreened theory 
and describes the same system. I n  particular the system must be finite and surface 
effects remain, partly concealed in .F( x, x’; U) .  However, we also describe a natural 
and very good approximation to a translationally invariant theory, in which 
.F( x, x’; w )  has the natural closed form 

exp { im( w)k,r) 
q x ,  x’; w )  m-2(w) {vv++2(o )Ko2U)- - - - - -  Y (2) 

where m( w )  is the refractive index of the unscreened theory (111). The  propagator 
F(x, x’; w )  has been used before by Fixman (1955), Mazur (1958) and Bullough 
(1965, 1967, 1969). Both our integral equation and its translationally invariant 
solution (2) are fundamental to the bulk binding energy theory of Dzyaloshinskii 
et al. (Abrikosov et al. 1965). 

The  contribution of the screened theory we report here is therefore to show how 
the screening processes can be said to occur, how these are related to surface effects, 
how they can be handled consistently in a (complex) refractive index theory, and how 
the propagator (2) and a translationally invariant approximation can be extracted from 
the theory. 

We now outline the theory. We consider an ‘instantaneous’ situation in which a 
system of molecules at fixed sites xi ,  enclosed in the finite region V ,  is subjected to an 
external electric field E( x, w).  In  I11 the argument from the quantized field theory 
admits a natural definition of the induced dipole moments, Pj. Then, in terms of the 
‘instantaneous density’ 

P ( 4  = c - X I )  

P y x ,  w )  = 2 P , s ( x - x j )  

3 

and the instantaneous polarization 

3 
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the result of I11 is 
n 

The isotropic polarizability of the isolated particles, a( w), is real and the radiation 
reaction is conveniently incorporated as a self-correlation by the ‘convergent part 
integral’ definition (111) 

j F(x, x’; w)S(x - x’) dx’ = $ikO3 U.  (4) 

Equation (3) is the fundamental equation of classical molecular optics (Rosenfeld 
1951) in a convenient form and from this point our discussion is essentially classical. 
We are interested in the ensemble average P ( x ,  w )  = (Pin(%, U)),,, and introduce 
the average electric field by the natural definition (Mazur 1958, Bullough 1970 to be 
published) 

&(x, U )  E E ( $ ,  w) + 1 F(x, x‘;  w> . P ( x ’ ,  w) dx‘. (5)  
v 

The integral over V is initially undefined. We define it as the sum of the conditionally 
convergent integral obtained when a vanishingly small spherical region v around x is 
excluded from the integration, and the contribution from o, defined by means of the 
generalized function interpretation (111) 

4n- 
- - U lim 1 F(x, 3’; w )  dx’ 

v-0 3 

Equations (3) and ( 5 )  enable us to eliminate the external field, and we obtain 
n 

This  is the fundamental integral equation of the present theory. 
Iteration of (7) shows that we can write 

P1”(x ,  w) = 1 h i n ( x ,  x’; a).&($‘, w )  dx’. 
V 

The statistical average h(x, x‘; w )  3 (hin(x, x’; o ) } ~ ,  is found to all orders in the 
small parameter na( w) where n = (p( *))a, 

A($,, $0; U )  = T Z E ( ~ )  US(x1 - ~ 0 )  +n2~2(~)F10H10  
m 

+ 2 npap(w)  1 ... [ F12 . F23 ... . Fp- 10H123...p-10 dx, . . . dxp- 
p = 3  V V 

P t t 

t = 1  lin(t) s = 1 s = l  
H(P) = f i - p  2 ( -  qt-l 2 n % ( P a ) ,  c Qs = P. (9) 

T h e  sum over lin(t) is taken over all ‘linear’ partitions of the ordered set ( p )  of p 
indices into t subsets (qs)  of qs consecutive elements from (p). 
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is the generalized correlation function which includes all self-correlations, the sources 
of the radiation damping terms of the series. T o  save space we use indices to denote 
position variables. This solution (9) cannot simply be extended to an infinite system 
since the integrals then diverge. It is related to the refractive index: we find we can 
identify the integrated power series for A( X, X‘ ; U) with the series for m2( w) - 1 in 
the microscopic refractive index theory (111), with the result 

47zuu: A(x, x‘; w)exp(im(w)k,.(x’-x))dx’ = m2(w)-1 (10) s, 
where V is a parallel-sided slab with sides normal to k ,  (the wave vector of the 
incident light). The  unit vector U is a polarization direction and U .  ko = 0. The  
result (10) justifies our choice ( 5 ) .  Actually, the left-hand side of (10) is slightly 
x-dependent when x is close to the surface, but virtually x-independent otherwise as 
described in 111. There it was necessary to analyse the surface-dependent terms 
piece by piece to find their position-independent contributions to the refractive 
index. However, by intioducing a screened photon propagator 9( x, x’; U) we can 
formally sum these surface terms. The propagator is defined as the Neumann solu- 
tion of the integral equation (Abrikosov et al. 1965, Bullough 1970 to be published). 

F(x, x”; w).A(x”, x”’; w ) . 9 ( ~ ” ‘ ,  x‘; w) dx” dx’” sv s, (11) 

S ( X ,  x’; w) = F(x, x’; U ) +  

with the definition (6). We use the series solution (9) for A( x, x’; w) .  

We have found the averaged solution of this equation to be 
With the closed form (1 1) we get a non-linear integral equation for Ain( x, x’ ; w ) .  

A($,, x,; U )  = n a ( ~ )  US(x1- X O ) + ~ ~ C ~ ~ ( W ) F ~ O Y ~ O  

+ 2 npcrP(w) 1 ... 1 912.~23 ... . F ~ - ~ ~  Y123...p.-10 
p = 3  v v  

x dx, ... dx,-,. (12) 

Here Y(p)  = n - p $ Y ( , , ,  and 9?l(p) is given by the generalized Ursell functions 
(see 111), which include all self-correlations, as 

The  sum in (13) is taken over all ‘connected partitions’ of the ordered set ( p )  of p 
indices into subsets (ps) of qs elements. We define a ‘connected partition’ : we repre- 
sent an ordered set ( p )  by consecutive vertices of a regular polygon, and a partition of 
( p )  by the collection of polygons formed by the lines connecting in cyclic order the 
vertices representing the indices of each set. Then a partition of (p) is connected if, 
and only if, any line drawn through the graph crosses a line of a set-polygon. The  
first few tY(,) functions are: 

q12 @12, tY123 = @123, tY1234 = %1234+@13@24* 

We use a version of the diagram notation of I11 for a clear exposition of the result (12). 
A circle represents a factor m( a) and a position variable. A line represents F( x, x’ ; w) 
and a double line represents S ( x ,  x’; w) .  A loop of dotted lines (indicated by a cross 
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line when coinciding with full lines) represents an Ursell function. All position 
variables are integrated except the first one and except those represented by circles 
carrying a dot. In  this representation A( xl, x,; w )  -m( w )  U6( x1 - x,) is given by 
figure l (a) .  

Figure 1. Diagram representation of multiple scattering terms. 

When the Neumann solution is substituted for 9( x, x’ ; U) we do indeed recover 
the solution (9) for A( x, x’; 0). In  figure l (b )  we quote the expansion of the screened 
two-body term up to fourth order to exemplify how each term in figure l(a) conceals 
an infinite series of ‘surface terms’ of the unscreened theory. We next show how 
these series can be approximately summed. When, in equation (ll), we replace 
A( x, x‘ ; w )  by {m2( w )  - 1 } ( 4 ~ ) - ~  U6( x - x’) (which is ‘local’ and satisfies (10)) and 
V by ‘all space’ we obtain an equation, which has the solution p( x, x’ ; U ) ,  given by (2). 
Motivated by the intuitively acceptable form of F( x, x’; w )  we now define the bulk 
approximation as the description in which $(x, x’; U) replaces F ( x ,  x’; U ) ,  and 
where all integrations are taken over all space. We need expressions for E($, x‘; w )  
corresponding to (4) and (6) for F(x, x‘;  U ) .  We find 

Jg(x, x’; w)6(x- x’) dx‘ = 3im(w)KO3 U (14) 

457 
l im/  v-0 F(x, x‘; w)dx’ = - m - 2 ( ~ ) -  3 U. (15) 

Figure l(c) shows the series that leads to the expression (14) for the screened radia- 
tion reaction in the bulk approximation. In  (c), v = {m2(w)-1)/4ma(w) and the 
first term represents the radiation reaction term (4). The  screened radiation reaction 
( 14) is of fundamental interest : it generalizes the one-particle self-energy, based 
on (4), to the many-particle system (I, Bullough 1970 to be published). We can now 
obtain an equation for the refractive index from (12) and (10): 

m2(w) -  1 = ~ U U :  { ~ M ( o J )  U + M(u)} (16) 
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where the tensor M( w )  is given in figure l(d). This result compares with equation (1  1) 
of 111, As in I11 each term contains the exponential factor which comes from (10) ; 
but now a heavy line represents $(x, x’; w )  and the integrations are taken over all 
space. The  combination of terms at order p is determined by equation (13). Note 
particularly that (16) contains the Y functions and not the Ursell functions simply. 
Therefore the division, in 111, of terms into surface-independent terms controlled by 
Ursell functions and ‘surface terms’ does not sufficiently categorize the terms : 
‘surface terms’ remain at fourth and higher orders in (16). But these all converge 
because of the combination of Ursell functions and photon propagators. Thus the 
screening process is entirely due to all of the surface-dependent ‘surface terms’, 
which do not have this property. Then (16) is part of a translationally invariant 
theory with k,, and U orthogonal but otherwise with arbitrary directions. 

This analysis also enables us to report that the extended Einstein equation of IV 
is certainly valid up to O(n4cr4( U ) )  and removes the qualification beyond O(n3a3( a)) 
noted in IV. 

The  details of this work will appear in the series of papers entitled ‘Many-body 
optics’ (see already I, 11, Bullough 1970 to be published). 

We are very indebted to Dr. R. K. Bullough for suggesting the problem of a 
consistent screened theory and for many helpful discussions. 

Chemistry Laboratory, 111, F. HYNNE 
H. C. 0rsted Institute, 4th February 1970 
Copenhagen, 
Denmark. 
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Experimental evidence of a minimum in the thermal 
conductivity against composition curve for the 
He-HD mixture 

Abstract. The thermal conductivity against composition curve for a He-HD 
mixture at 297 K shows a well-pronounced minimum giving a A value for the 
equimolar mixture lower by about 4% than that of both the pure components. 
Although such behaviour is quite exceptional there is no reason to consider it 
as anomalous. 


